				Stresse	es at Bore of	Liner(b)			
	Residual Stresses at RT			Prestresses at Temperature			Operating Stress at Pressure and Temperature		
	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	s/σl	σ_r/σ_1	σθ/σι	s/o1	σ_r/σ_1	$\sigma_{\theta} / \sigma_1$	s/σ_1
RT Design	0	-1.000	-0.5000	0	-1.0000	-0.5000	-0.9727	0	0.4863
500 F Design	0	-1.1230	-0.5615	0	-1.0000	-0.5000	-0.9727	0	0.4863
1000 F Design	0	-1.2998	-0.6499	0	-1.0000	-0.5000	-0.9727	0	0.4863
		Be	etween Cylind 1 and 2	ers Between Outer Cylinders					
		Be	etween Cylind	ers Between					
		for	for $p = 300,000 \text{ psi}^{(d)},$ $E \triangle_1 / r_{1p}$			n and n + 1 $E\Delta_n/r_np$			
RT Design			0.358		0.343				
500 F Design		0.454			0.343				
1000 F Design		0.533			0.343				

TABLE 12. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH BORE MULTI-RING CONTAINER WITH K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, $n \ge 2$, $\alpha_r = 0.5$, $\alpha_m = -0.5(a)$

.

4

.

(a) The k_n, K, a_r, and a_m are defined by Equations (5), (6), and (13a, b), respectively. Material data are given in Table 11. The liner is 18% Ni steel and the outer cylinders are H+11 steel.

(b) σ_{r} is the radial stress, σ_{θ} the hoop stress, S the shear stress (S = $(\sigma_{\theta} - \sigma_{r})/2$), and σ_{1} is the design strength - less than or equal to the ultimate tensile strength of the liner.

(c) E is the modulus of elasticity of the outer cylinders. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n. (d) $E\Delta_1/r_1p$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required, (p = 0.9727 σ_1).

73

4

-

	Stresses at Bore of Liner ^(b)									
	Residual Stresses at RT			Prestresses at Temperature			Operating Stress at Pressure and Temperature			
	σ_r/σ_1	σθ/σ1	s/ol	σ_r/σ_1	σθ/σι	s/o1	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	s/o1	
RT Design	0	-0.8000	-0.4000	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
500 F Design	0	-0.9054	-0.4527	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
1000 F Design	0	-1.0505	-0.5253	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
		Between Cylinde 1 and 2 for $p = 300,000 p$ $E \Delta_1 / r_1 p$		Outer Cylinders						
						Cylinders				
						nd n + 1				
RT Design			0.217		0					
FOO E Design		0.309			0.304					
500 F Design		0.383				. 304				

TABLE 13. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH BORE MULTI-RING CONTAINER WITH K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, $n \ge 2$, $\alpha_r = 0.5$, $\alpha_m = -0.3$ ^(a)

(a) The k_n, K, a_r, and a_m are defined by Equations (5), (6), and (13a, b), respectively. Material data are given in Table 11. The liner is 18% Ni Steel and the outer cylinders are H-11 steel.

(b) σ_r is the radial stress, σ_{θ} the hoop stress, S the shear stress (S = $(\sigma_{\theta} - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner.

(c) E is the modulus of elasticity of the outer cylinder. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

(d) $E \Delta_1 / r_{1p}$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required (p = 0.9727 σ_1).

74